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FOREWORD

A general three-dimensional computational model for nonlinear com-
posite structures and materials was developed by Prototype Development Associates,
Inc. (PDA) under Contract Number N00014-76-C-#~0161 for the Office of Naval
Research. Dr. E. L. Stanton served as Program Manager, Mr. L. M. Crain was
responsible for scientific programming services, Dr. D. Mulville served asc
technical monitor for the Navy and Dr. J. Buch of PDA contributed a wealth of
background information on material behavior. Their support and that of Dr. N.

Perrone, who originated the project, are gratefully acknowledged.
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ABSTRACT

A computational model for the analysis of structural and microstructural
behavior in general solids of composite material is presented. Emphasis is placed
on representing the anomalous material behavior of composites and on the construc-
tion of computational models with variable properties. Alternative material models
using continuum and statistical mechanics were reviewed and a modular code de-
signed for compatibility with several different models. The conslituent materials
are characterized in terms of those state variables that correlate a materials
response such as effective stress or strain energy. A parametric cubic repre-
sentation is used for all state variables, the solid geometry and all physical pro-
perties. The associated finite clement extends isoparametric modeling to allow
properties, linear or nonlinear, to vary over the volume of an element as in rosette
material construction. Applications of the model to a carbon-carbon unit cell, to
strain singularities and to the inelastic response of a graphite bar illustrate its
utility. Good agreement with triaxial test data for inelastic strains under hydro-
static pressure is obtained. Numerical results are computed using PATCHES-III
and the conjugate gradient algorithm without the assembly of large matrices. This
approach is tailored for vector processors and can reduce the high cost of non-

linear three-dimensional analyses.
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NOMENCLATURE

a Penny shaped crack radius
Bj, Bii l":uumctric cubic line and surface patch coefficients in geometric
‘ format

B Binormal vector in the Frenet frame for a curve

Cijkl Stress-strain coefficients

ACn Difference in Cijkl (O, T) and Cijkl(vn + 1)

c© Scalar multiplier in the Batdorf model

A1 Cartesian basis vector

By, ET Longitudinal and transverse extensionzl moduli

Fij’ Fijkl Material strain state coefficients

Fij’fijkl Material stress state coefficients

E Applied load vector

Gt 61T Shear moduli in the longitudinal-transverse plane and the
transverse plane

[K] Stiffness matrix

n Index indicating cycle number

N Dimension of a matrix problem

N Normal vector in the Frenet frame for a curve

P.E. Potential energy

P(¢) Parametric cubic property model

P Conjugate gradient direction vector

Qn Pseudo-force vector at cycle n

Ly Radius

R Residual vector

i,Sij Parametric cubic line and patch coefficients in algebraic format

t Conjugate gradient step size at cycle i

2 Tangent vector in the Frenet frame for a curve

T Temperature

u Displacement vector at a point

- iii -
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variable representing a material strain state

variable representing a material stress state
Strain energy densily

Coordinate i in the ¢; frame

parametric cubic line

Longitudinal and transverse thermal expansion
Coefficients of thermal expansion

Conjugate gradient direction factor

Strain components

Polar coordinate angle

Parametric coordinate 0 < §i<: 1

Effective stress

Normalizing stresses in the Batdorf model
Stress components

Helix angle

Over-relaxation factor

=iy =

coefficient
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1.0 INTRODUC TION

The use of composite materials for primary structure has led to demands
for information on their three-dimensional response simply because uniaxial and
biaxial loading often lead to important triaxial effects.  This is true in the elastic

4 range where edge effects can cause delamination and it is particularly true in the
inelastic range where load redistribution can be strongly dependent on the micro-

3 structure of the material. One of the more readable essays on this subject is
l)l'uclu-r'sl account in words and pictures of how different microstructures effect
inclastic macroscopic response.  Many of these involve inelastic mechanisms quite

ditferent from the ervstallographic slip characteristic of metals. Some graphites

2
exhibit biaxial softening duc in part to microcracking and several correlative
izl 8 < - s ; 2
models 7' (i.e., phenomenological) are available that fit this data in the tension-

tension quadrant. Quite the opposite behavior can occur in the compression-
compression quadrant for another particulate composite, concrete, where the
confinement of microcracks results in biaxial stiffening and again correlative
mndcls'} are available that fit this data. Anomalous inelastic behavior also occurs
in fiber-reinforced composites as described in the survey paper by Francis and
Bcrt‘i who review the history of the fiber-matrix load transfer controversy. This
issue is complicated by microstructural defects, particularly in composites
subjected to severe processing conditions, by local fiber buckling and by residual

processing strains.

Genuinely predictive inelastic models for composite materials are not

available and most correlative models are an extrapolation of uniaxial data to multi-

: e o s S
axial stress states. The situation in metals is similar but not to the same degree.
o} 9 i "l
Lin and Havner , for example, have produced models that can predict multiaxial

stress-strain response for polyerystalline aggregates and microstructural models
; 10 - ; 3 , ¢
at the atomic level  (lattice statics) are also used in the material sciences. The

microstructural detail required in a predictive material model for inelastic response

clearly can be prohibitive for structural mechanics. In the case of composite

)
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materials even the assumption of a statistically homogencous material may not
hold for cortain behavior.  However, when it does apply and when the principle
of local action applics, we can use correlative models supported by adequate
testing tor structural mechanies. Operationally, this may require one or more
pre-processors to obtain a correlative model and one or more post-processors
{o obtain results at the constituent level. Given this premisce, the present effort
focused on developing a computational system for all those correlative models
that can be characterized by state variables. This is a very large class and will
allow the numerical analysis of many composite structures whose inelastic
bhehavior differs trom metal plasticity.  The approach also allows the model to
function as its own pre-processor and synthesize correlative models from

constituent inelastic properties and the behavior at interfaces.

The magnitude of the computational problem associated with inelastic
three-dimensional analyses approaches that of characterizing the materials'
physics. Several excellent survey papers are ;L\';liluhlv“ as well as case histories
of recent ;q)pli(':ltiuns.lz The computational approach taken in the present paper
is basced on the premisce that better computers are more likely than better numerical
methods. Consequently, a computational method was adopted that takes advantage
of what most scicntific computers do best, vector processing. It is an adaption
of the conjugate gradient algorithm that avoids connectivity optimization, that
uses relatively little core and whese eyele time grows at most lincarly. One of
the method's disadvantages in linear problems, it is inefficient for multiple load
conditions, can become an advantage in nonlinear problems when the iteration
for the next load increment is started from the solution for the previous increment.
A second aspect of the computational problem is that of data generation for the
discrete mathematical model.  This problem received considerable attention in
the original development of PATCHES-III and resulted in a parametric cubic
modeling system based on construction-in-context. . The present effort added

new geometry construction operations to the system, developed the parametri-

zation necessary for modeling strain singularities, developed intra-element
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property modeling and developed a common input format for all nonlinear material
properties. Applications of these features are made to a carbon-carbon unit cell,
to an interior crack problem and to the triaxial response of a graphite bar tested

L3
by Jortner.
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2.0 MATERIAL MODELS

L State Variable Models
Ihe objective is a general computational model that accounts for the
anomalous inelastic behavior of composite materials, Table 1. The basic assump-
tions are that the material is statistically homogencous and that at the macroscopic
level inelastic behavior is strictly local. It is also tacitly assumed that this
behavior is deterministic which may be the weakest link in the chain of assumptions.
Physically based statistical m(ulvls“ have been very successful in explaining the

extensional behavior of graphites associated with the nucleation and growth of

microcracks. However, additional work is required to include a shear mechanism

y and to reduce their computational expense betore they can serve as the basis for
a general computational model.  Mathematically based statistical theories have
not been nearly as successtul,
Table 1 Anomalous inelastic behvior observed in composites
Yiclding Independent of hydro- Can be dependent on hydro-
static stress static stress
Inclastic Crystallographic slip Microcracking, interstitial
Mechanism Twinning slip, microbuckling
Inelastic Constant volume Inclastic strains can cause
Strain plastic strains volume changes
Unloading Occurs at elastic Can occur at secant modulus
modulus
Failure Convex failure sur- Concave failure surfaces
faces can occur
The approach taken assumes simply that the stress-strain law is some
function of one or more stress or strain state variables. This assumption can be
used for both inecremental and total stress-strain laws but the present effort is
limited to the latter and to three state variables
|
8
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where one is temperature and €18 the mechanical strain.  Although not prescribed,

commonly uscd \'] and V, expressions are

7 | V., ¥ ¥
¥ i E¥* Yol 5
and
: o MM ,
e}
\:: 1.!\1( 1’ '_') (n €

A \/
Y LA LY ;1

7 I V.,V 3

9 M (\l, \ 2) alytﬁ\l (3)

There is a formal similarity to the nonlincar stress-strain model of Nu<-l)(-1‘1'-). but
his model restricts the torm ol Fquation 1) and does allow the coetticients in
Equations (2) and (3) to be independent tunctions ot the state of the materiwal. This
is necessary to account tor changes in the degree of anisotropy during inclastic

: 16, 17
straining.

\ great many corrvelative models including Batdort, Jones-Nelson,
Weiler, Hahn-Tsai and the classical deformation models can be represented using
Equation (Iy. [t allowed the design of a nonlincar material module encompassing a
varicety of formulations all using one input format. All moduli and state tunctions
are interpolated using piecewisce cubies which arce capable ol approximating any
continuous function as closely as required. This avoids the interpolation problems

associated with exponential approximations in the Jones-Nelson model.  The state

variable used in this model is the strain cnergy density, \‘2 W, so that the Fi'
1

kl
arc the (‘i,I | and the nonlinear equation
IR
: . M M
W C..c (WreE, & € (-tones-Nelson) (1)
ijkl 1j Kkl
A must be solved for cach strain state.  The Batdort model is a strain-stress tormulation

that is very simple and accurate for transversely isotropic graphites. [t uscs an
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'
&
|

. R T e




offective stress parameter for a state variable that can be converted to a strain
formulation by solving a nonlincar equation.

bl

g al (Batdort)

Fot % %

- M M (D)

: (g) C (
£ l\l.\[ "

R ( €
liiH ijmn “mn st

The moduli are lincarly dependent on @ in this model.  In order to account for
tension-compression behavior differences, Batdorf uses an ad hoc procedure based
on the sign of individual stress components.  Unfortunately, this procedure,

when used with Equation (o), often will lead to oscillating divergence between two
stress states having the same ¢ but different signs.  To avoid this, the signs are
held constant during cach major cyvele in PATCHES-III. These difficulties are
rewarded by surprisingly accurate agreement with the extensive biaxial and triaxial
data obtained by .Jtn'lnvr.z Numerical results obtained using Fquation (3) are com-

pared with his data later in the paper for triaxial loading at constant strain ratios.

The Weiler model also uses an effective stress parameter for a state
variable but allows the l-‘,ll ) to be dependent on the effective stress to account for
11
changes

I T\ 'oile 6
I ikl (o Uij 71 (Weilen (6)

in anisotropy with strain. The procedure used by Weiler and t)th(-rsh is based on
constraining the offective plastic work to be equal to the uniaxial plastic work in

cach component. Applications of these models have used Fiikl functions that make
the effective stress insensitive to hydrostatic pressure, hutlthis is not a requirement.
R.Vbickiw included plastic volume change in an -‘—“iikl model for a carbon material,
JTA, several years ago and obtained good correlzl‘tiun with data for a pressurized
test eylinder under axial load. He, too, used an ad hoc procedure to account for

tension compression diffevences.

The correlative models described have been used principally for partic-

ulate composites. [t is also possible to represent most correlative models used

oG =
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tor fiber reinforced composites with Equation (1). Consider for example the
20 ! . . ——r- . J )
liahn-Tsai~  model in which the nonlinearity for a laminar is shear dominated.

In this casc

2,0
Vo I g ahn-"Tsai (7
2 1 1212 %12 (Hahn-"Tsui) )
and the extensional (‘,,I 1 arce independent of V, . There are essential differences
ijk =
between this model and thosce using strain energy for V_ although at small strain

21
levels both fit the data for graphite-epoxy laminates reasonably well.

2.2 Spatial Variable Models

The objective is to model property distributions as accurately as defor-
mations so that modeling detail is controlled by representation of the output rather
than the input.  This requirement is another instance in which composite material
modeling ditfers from metals both for microstructures and structures. A carbon-
carbon unit cell, for example, can be modeled with one variable property element
or eight constant property clements. A helically wound structure with changing
radii has properties that are continuously changing and is also most efficiently
modeled with variable property elements. The approach taken in PA TCHES-IIT
is to use the same parametric cubic functions for both geometry and physical data.
It is a generalization of the isoparametric approach and requires the development

of new modeling techniques for properties.

Recently Henshell22 demonstrated how variable mesh point spacing
(parametrization) can be used to greatly improve isoparametric models near a
strain singularity. The same technique, changing the parametrization of the geometry
model, can be used to model the step in material properties at an interior bimaterial
interface. In this instance, Figure 1, we induce an inflection point in the property
model at the interface by constructing a geometry model with an inflection point at

the interface. Consider a coordinate function 7 (¢) in algebraic format

3 2
—a F L Q L Q L Q
Z(¢)=s 8,6 +8,§+8, (3




and impose the boundary conditions and inflection constraint

Z.(0) .\‘l

Z(€)=0=38 £ +28,F 5,
Z(E) =0 .w;sl{»:s_, (Y)

where the step is at Z 7.(;:). Next solve Equations (9) in terms of the as yet unknown

Ewhere AZ = Z(1) - Z(0).

S = Z(0) (10)

The location of the step or interface in parametric space, &, can now be found by
solving the cubic equation

20 .5 AZ/AZ) L3 AIANE - DBLAZ) =0 (11)
for the root in the interval 0 < £ < 1 where A7 - 7 - 7(0) and Descartes' rule of signs
guarantees there will be a root in the interval. Finally, a parametric cubic for a
property component P (£) is obtained by imposing the boundary conditions P (0) I’”,
P 1) P] and P 0y P (1). Other choices are possible, for example, the value of

P (&) could be prescribed at four points, but this will cause P (§) to fall outside the
interval {P”, P]J over portions of the interval 0€ < 1. This may be necessary if
the area under the curve is a key parameter. One might keep the P 0) = p (1y=10
constraint and choose the value of P (0) such that the integral of P (£) on the interval
()SSSE gives the correct area, p”K?,, with the corresponding choice for P (1). In
general, the determination of the parametrization and the intra-element property

model form a nonlinear programming problem once an accuracy criteria such as

least squares is established. THowever, a great deal can be accomplished with
{




simple analyses of the type presented.  Parametrizations for a strain singularity
at 7 (0), for example, can be obtained without solving a cubic and several are
listed in Table 2.

Table 2 Strain singularity parametrizations

Z.(¢) 7.(0) ZiELL3) Z.(2/3) 7.(1)
DY
E- 0 L./9 1L/9 L
¢ 0 L/27 KL/27 I
» i = i & &7
2 .
- 0 4L/27 201./27 L

Consider next the modeling of a fiber reinforced structure in which the
orientation of the material axes changes continuously with respect to a reference
frame. An interesting example is rosette construction used in rocket nozzle
structures in which the tibers spiral about an axis with changing radii, Iigure 2.
I’ug:mng: provides a detailed account of the relations between coordinate frames
and shows that while axisymmetric, the properties vary in the radial direction.
Also, all 21 elastic constants are non-zero for this material in eylindrical or
rectangular coordinates making efficient property modeling particularly important.
The transformation from material coordinates to cylindrical coordinates in this
case is determined by a rotation ¢ - constant followed by a rotation a  a (r) where
r sin a constant. The transformation to rectangular coordinates simply requires
adding a rotation @ to a. Intra-element property modeling in this case requires
only the ply properties and the spatial distribution of the Euler angles. The ori-
ginal PATCHES-III system was designed for such input but did not anticipate the
nced for variable Euler angle data. As a result, the spatial variation of all 21

clastic constants had to be modeled individually using a pre-processor for a one-

clement model of a rosette cylinder. The same model could have been created




from the spatial variation of three Euler angles, two of which are constant.  Con
parisons between the parametric cubic properties and the analytic showed differences
of less than one percent. Complete results from this study will be presented in

a later paper.  Finally, it should be remembered that variable property modeling
adds no new degrees-of-freedom to the analysis model and can reduce the number

of elements required for some composite materials.
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3.0 COMPUTATIONAL MODELS

3.1 Geomelry

The basic constructions and properties for parametric cubic line, surface
9,

and volume models may be found in the work of Coons  and uthcrsl". They pro-
vide a data base for computer aided geometric design comprehensive enough to be
o

used for parts definition in manufacturing = and they now are used extensively in
industry here and abroad to define external surfaces. Their reliability derives
from modeling in parametric space where there are no problems with asymptotic
slopes and their accuracy derives from using Hermite polynomials which interpolate
a function and its derivatives with the smallest possible error. The price for these
qualities is twelve coefficients for a line, forty-eight for a surface patch and one
hundred ninety-two for a volume hyperpatch. The data generation problem for these

coefficients can be solved using the construction-in-context aoproach developed ori-

ginally for PATCHES-III. This system uses a variety of LINE._ . PATCH___ and HP

directives with cross referencing to construct the geometry model. Two con-
struction operations, ruled volume and outline surface, are illustrated in Figure 3
and a listing of the currently available options is provided in Table 3. The outline
surface construction operation shown in Figure 3 consists in having the computer
move an outline curve along a base curve with a fixed orientation relative to either
a global Cartesian frame or the local Frenet frame of the base curve. In developing
this option, it became obvious that in many instances it would be desirable to change
the initial orientation of the outline curve. This feature was provided by allov'ing
an initial trandormation that leaves the file copy of the outline curve unchanged.

In retrospect, many of the original PATCHES-II directives would have benefited
from such a feature which functions as a modifier in the language implicit to the
present approach. The benefits of having even a primitive language have been
substantial for data generation. The system functions as its own pre-processor

and allows shapes, like those shown in Figure 4, to be created using roughly ten
input directives (cards) per model. However, the models created contain several
hundred coefficients that completely describe the geometry of the figure. The
Frenet frame for a line Z(¢), for example, can be computed directly from the
parametric cubic model

w Y =

S— e . e

ot LT

|
x
1
|
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T=2 /12
N-=7/|%
B - Tx N (12)

where the dot indicates differentiation with respect to, ¢, the parametric coordinate.
[t is also a routine matter to compute surface normals, areas, volumes, curvatures

and in short any geometric property.

lable 3 Geometry construction directives

LARCPC PATCHB HP'B SCALP
LINEB PATCHGR HPL, SCALPH
LINECS PATCHL HPHEX TMOVE
LINEPC PATCHO HPN

PATCHQ Hpp

PATCHR HPR

HPZ2ZPAT
HP6GPAT

Mnemonic Sutfixes:
A - Algebraic , 3 = Geometric , €S = Cubic Spline, L = Line,
N = Normal 3 P = Point > PC = Parametric Cubic -
Q = Quadrilateral , R = Rotation ,

[inite [Klement

o

The decision to use the sixty-four point isoparametric finite element for
the present study rests on its modeling efficiency for anisotropic materials, for
pathological shapes and for general boundary conditions. There are many cases in
which these qualities are not required; however, the focus here is on the anomalous
behavior of composites particularly in highly stressed states. In this regard it is
important to realize that material anisotropy affects matrix conditioning as strongly
as geometric aspect ratio. Consider, for example, a heated disk with isotropic
properties (E/ G = 2.6) and with highly anisotropic properties (E/G - 17.25) in which

the temperature varies quadratically with radius. This change in material anisotropy

(2]




caused the number of elements required for good stresses to double as Table 4

-~

demonstrates. The large hoop stress ratio at ¥~ 2R/3 is near a g 0 point

Table 4 Anistotropy effects on stress accuracy

[sotropic Anisotropic Anisotropic

Two Elements Two Elements IFour Elements
r/R (o a. g ag* ¥ o
L r ] Iy 6 O 6

0 . 998 . 998 1. k28 1. 128 1.033 1.033

1/3 « 8% T L8411 1.142 1.035 1.045
2/3 + 9T 1.030 .461 - D97 « 901 1.365

l = « 998 i 473 e 1.099

* Ratio of computed stress to exact stress
The exact stress is zero at this point

and is simply an indication of large differences in small numbers. Similar

studies on the effect of high aspect ratios and degenerate element shapes indicate
the sixty-four point element has a broad band over which it can maintain good
stress accuracy. In order to realize these benefits many practical problems
associated with large element matrices had to be solved in the original PATCHES-III

system and the added burden of material nonlinearity required similar efforts.

- 13 -
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An examination of the velative costs of generating an element stiffness
matrix vs. generating an element thermal load vector for a carbon-carbon material
range from 40:1 to over Y0:1 depending on the geometry.  These ratios arc very
high in comparison to lower order elements and strongly suggest the use of a pseudo-
force formulation for material nonlinearity. When direct matrix solution methods
are used, another factor in tavor of this approach is the vatio of matrix assembly
and decomposition time to the forward-backward solution time which is typically
i:1. The computational factors in favor of an initial stress formulation are faster
convergence and greater stability at high strain levels.  Studies of the relative
convergence rates by ll:i\nw":“ indicate roughly 2-1 ratios in favor of the initial
stress method which is not nearly cnough to make the method competitive.  Stability
will not be a factor tor small strains and a periodic initial stress cycle can always

be taken if necessary.

There are many derivations of the matrix equations associated with
the pscudo-foree method and they need not be repeated here. The matrix equations
. SO 26
used in the present study are very similar to those used by Havner.
(v, D] U= F

[K(©, B} U= F + [K(O,T) - KW, T)] U (13)

which leads to the recursion relations

[K(O, T)] U F+ [KO,TY- K ,T)U

~n+ 1 ~ n ~n
KO, T)] U B 1
(R 'l ~n+1 ~ ’31) (3%

The pseudo-force term is obtained by integrating the strains from cycle n against

the difference in properties relerring to Figure o

T ,
Q (Bl [AC 1€ d\ (15)
n ~n

where [B] transforms mesh point displacements U into strains.




A sufficicent condition for convergence of the method inferred from Havner's analysis
is that [K(v, T)] must be monotonic in V. It should be noted that in material models
with inelastic volume changes, the body forces for thermal stress problems will
also change. These change can be accounted for in Qn by using the mechanical
strains in Equation (15). The limited experience to date with the method has enjoyed
rapid convergence. As more complex problems are attempted, it may be necessary
to utilize more efficient recursion relations. Another method that was considered
in the study casts the problem in the torm of a first order differential equation
using the residual vector formed from Equation (14).

R -[KJU - F-Q (16)

l{-'l{-Q‘ a

~ ~

The dot indicates a time derivative where time increments are synonymous with
load increments and the scalar w is equivalent to an over-relaxation factor.
Ol
: s = : - :
Stricklin, et al. use this approach to derive a selt-correcting procedure that

worked very well in their nonlincar material applications.

' 3 Matrix Solution

The third major computational problem after data generation and matrix
generation is matrix solution. The use of a 64-point finite element leads to matrix

equations that are relatively dense. It is not unusual for densities of 35 percent to

4 occur in matrices well over dimension 1000. The original linear code development
concentrated on the first two computational problems and used existing (NASTRAN)
matrix routines to solve the matrix equations. As a result, the system is efficient
for problems up to about dimension 1000 and looses efficiency for larger matrices

until eventually saturating the computer. The need to solve similar dimension

nonlinear matrix equations led to a change to an iterative solution method. The

ko advantages of this change are 1) elimination of large matrix files, 2) freedom from
conncetivity optimization problems, 3) relatively small core requirements for large
problems and 4) heavy vector processing. The disadvantages are possible slow

convergence and,in linear problems, N multiple-load conditions are N times as
Sy

expensive as one. The iterative method sclected is the conjugate gradient algorithm™

15 -
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and in properly scaled coordinates, it converges in far fewer cycles than the dimension

of the matrix. Referring to Equation (16) tor the residual R

}? R(U )
) ~i)
; , U +t.P
= 1 ~i Yy
| R ) 3. P (1%)
i 1 ~j+ 1 Pi~i
where the sealers t, and B, are
i i
o |
| 2
i | R.| P~ [KIP
= i ~f ~1 ~I
i -, .
/’)) i“ 'j ) '{ (19)
' & ~f

4

This is the linear form of the algorithm appropriate to the solution of Equation (14).

It is also possible to use the nonlinear version of the algorithm to solve Equation

P RU, » TP )

(13) directly. In this casc, t. is the smallest positive root of
: o RV

i

however, past expericnee favors successive clastie solutions and this was done.

Recent applications of the lincar algorithm to 3D composite material problems by

D0
29 ] ] ' - :
Dana  always converged to four places in less than N/9 cycles for problems of

dimension N = 500 to over 2000. Applications in the present study have been to
small one and two element models requiring N/2 eyceles for similar accuracy.

Efficiency is also a function of the cost per eyele and this is where the

veetor processing efficiency of scientific computers help: iterative algorithms.
Even the CDC 6600 can be made to compute dot products very efficiently by taking

advantage of multiple arithmetic units. Unfortunately, older computers like the
UNIVAC 110% do not have this feature and because of their short 32 bit word, all
arithmetic must be done in double precision. Several attempts to use mixed mode
arithmetic on 2 UNIVAC 1108 were unsuccessful.  The operation most sensitive
to round-off error is the transformation of an element stiffness matrix from geo-

metric format to point format., i

he reason is the large difference in the magnitude

of displacements and displacement derivatives. Fortunately this can be avoided

by transforming directly from algebraic format to point format. Another

= 16
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factor atfecting cycle efficiency is the amount of data transfer. In the present

approach, only the reduced element matrices are transferred into core cach cyele.
Older versions of the program transferred the reduced structural matrix into core
each cycle and this was more expensive primarily because the matrix had to be
unpacked a few columns at a time. As a fringe benefit of using element matrices,
the data transfer per cycle grows linearly with the number of elements in the model.
The overall eycle cost then grows at most linearly since vector processing also

increases at most lincarly with the number of elements.

A constant issuce in iterative methods is the convergence criteria. The
first parameter to converge is the energy with the maximum modulus displacement
component usually a close second. When these two parameters have converged to
seven places, the stresses and strains have about three-place accuracy. Several
additional cycles arc required to produce stresses and strains that agree with the
direct solution to six places (see Iigure 6) and this raises the issue. Should these
additional cycles be executed to increase the accuracy of the least significant stresses
and strains and provide consistency with direct solutions? In linear problems this
is done because the increase in cost is modest. However, in nonlinear problems,
this expense is harder to justify since the intermediate solutions have no function
other than to provide accurate state variables, like strain energy, so that accurate

material properties can be computed.

. - l.'.,w. L
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£, 0O APPLICATIONS

{. ] Carbon-Carbon Unit Cell

Ihe processing of 3D carbon-carbon matevials ideally results in an ortho-
gonal arrvay of fibers in which the open regions are filled with a carbon matrix mate-
rial during densification. The repetitive volume element for the malterial has three
planes of symmetry and Figure 7 shows schematically one octant of the so-called

unit cell, Macroscopic properties for this material are usually based on an analysis

of the unit cell with uniform traction or displacement boundary conditions as des-

S0

cribed by Ross™ . A constant property finite element model of this composite would
require a minimum of eight elements and the referenced analysis used twenty-seven
elements. This same unit cell was modeled with only one variable property element
using the techniques described earlier. ‘The constituent properties for the fiber
bund!es and matrix material are given in Table 5 and a more complete description
of the composite is given by Huss:"”. The results from the one element model are
in remarkably good agreement with the results from other analyses presented in
Table 6. There are several comments that need to be made about these results to
maintain perspective: (1) the orthogonal nature of the weave allows the macroscopic
properties to be computed from coarse models (2) the computer plot, Figure 5, of
the free thermal expansion of the one element PATCHES-IIT model shows mesh lines
at € - L./6 to enhance viewing and (3) imperfections in the unit cell can result in

large differences between ideal and real material properties.

Given this perspective, one conclusion to be drawn is that without variable
property modeling an analysis using the present element would cost over an order of
magnitude more and not substantially change the mechanical properties. A second
interesting conclusion is related to the poor estimate of o 11 and the sensitivity of
the macroscopic properties to constituent properties. The parametric cubic property
modeling used P(o) - P, P(1) = f’. and f’(o\ P(1) = 0 boundary conditions which

tend to lower the high modulus constituent data and raise the low modulus data.

A sensitivity study revealed that a1l was primarily a function of the longitudinal
5
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Table 5 Unit cell dimensions and constituent properties
LE2 = 6.7, 113= 0.3, L21 =0, 085, 128 = 0,015, ¥131= 132 = 0.0062
7 ZosZqg Matrix
-6
l‘:l X 10 33. 34 4. 841 0.70
-6
Ep X 10 ’ . 8958 1.332 0.70
v .1818 . 1340 0. 15
LT :
R . 1898 L1849 0.15
- -6
G._x10 1.169 . 9405 0.30435
LT -6
(Hq‘xlo . 3765 .5619 0.30435
&
T x 10" « 5133 1.647 2.5
4 6
L 10 . 5149 4,571 2.5

'Zi Fiber bundle properties, reference 30,

Table 6 Unit cell macroscopic property comparisons

PATCHES-III SAP’ RULE-OF-

(1-Element) (27-Elements) MIXTURES
c11 x 1070 11.793 12.461 12.460
c12 x 10°° <274 . 226 .230
C13 x 107" 248 214 222
c22 x 107" 2.274 2. 328 2.340
€23 x 107" .251 211 .225
c33 x 10°° 1.518 1.376 1.416
ca4 x 107" B4 @000 emsess .853
C55 x 10°° GO cwmeas 754
C66 x 107" 885 eskee 609
all x 10° 1.462 . 748 .755
222 x 10 2. 896 2. 567 2.271
%33 x 10° 4,284 3.924 4.039

*SAP results from reference 30.
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@, of the '/.] fiber which is very small. In this case the parametric cubic model
cH“c('Li\'vl\' doubled the o [ of the '/l and the boundary conditions for this property
should be adjusted to give the correct area under the curve.,

m addition to featuring the intra-element modeling capability, this appli-

; 31

cation also raises the issue of sensitivity analyses. Schmit — has long advocated
making analysis programs more design oriented by providing information on the
sensitivity of the analysis results to design changes. The present formulation of
the nonlinear material offects, Equation (16), allows such information to be com-
puted by making the change in material properties constant with respect to a state
variable and halting

v the iteration after the first or second cyele. This procedure

was successfully applied to a unit cell analysis as part of another study.
i 3

1. 2 ('l'lll'i\l‘\‘ Bar

To establish the utility of the parametrization in Table 3 for three-

dimensional crack analyses, an internally cracked bar, Figurce 9, studied by

D]
(S 3o

Gyekenyesi and Mendelson ~ was analyzed using a two clement symmetry model,
This problem is a finite dimensional version of the penny shaped o1 poker chip
crack problem whose elasticity solution contains a square root strain singularity.
The two element PATCHES-TI model shown in Figure 10 uses parametrizations in
the axial and radial directions that induce & square root strain singularity. When
the singularity is at Z (1) rather than Z (o), as in the clement over the crack lace,
the formal expression for 7 (&) is

D
“) (21)

-

7@y = a (2¢&-&
which lead to the same behavior Gt Z (1)

ty p * u,cf, > Ziy
o
= (a/2 yT) u,, 29)
LS
where r - 1 ~7,1 in this element and the comma notation indicates differentation.
There are two features of the parametric cubic model that merit attention 1.)

the geometry model is trivial to construct in algebraic or geometric format and




2.y the element displacement functions in geometric format have u,g(lj as a nodal

variable which is directly related to the stress intensity factor. The coefficients
for the algebraic,S;, and geometric, Bj, representations of Equation (21) are
simply

S 0, S -a, 83 =2a, §, =0 (23)
and
=2a, By =0 (24)
The construction of the complete geometry model for this problem required six
grid cards, two PATCHB directives containing only four nonzero Bij each, and
two HPR directives. However, this easily constructed model 1s capable of accur-
ately representing the highly deformed geometry, Figure 11, as the crack opens

under an axial load.

Comparison between the present solution and the Gyekenyesi-Mendelson
solution, Figure 12, show good stress agreement. The strains in PATCHES-II]
are computed at the Gaussian points and then transformed to the one-third points
which accounts for the finite amplitude stresses at r = 0. The stress intensity
factor computed from u,g(h of the element containing the crack face is 2.57
higher than that for an infinite dimension bar whch is slight_ly closer than the
Gyekenyesi-Mendelson result. The displacements are also' correspondingly closer
to classical than theirs. The parametric derivative u,f in the present model may
provide a convenient characterization of stress imensigy. The issue would depend
on its behavior under admissible reparametrizations such as those in Table 2. Since
in general the strength of the singularity is unknown and changes as a function of
material anisotmpy%. A carpet plot of the radial strain component over the
(Z1s
solution which contains sin 8 and cos 8terms in the strains.

7,,;) plane, Figure 13, shows a theta dependence in keeping with the elasticity

458 Graphite Bar

Consider next the application of a stress-strain state variable model to a

composite material whose inelastic behavior is known to differ significantly from that




of metals. ATJ-S graphite is one such material and its inelastic behavior has been
extensively tested by ,lurlncr: in biaxial and triaxial stress states. 7To focus clearly
on the ability of the model to represent inelastic behavior not normally found in
metals, a case of hydrostatic compression was selected. A classical plasticity
solution would be identical to the clasticity solution for hydrostatic loading. This
material, however, is quite nonlinear under hydrostatic compression and the Batdorf
model for ATJ-S fits the Jornter test data extremely well, Pigure 14, A trans-
versely isotropic graphite barv, diameter 0,250 inches by 4.0 inches was loaded by
an axial force and exiernal pressure in these tests. The stress-strain version of
the Batdorf model was used to compute the data in Figure 14 assuming constant
strain ratios which is consistent with the Jortner results. The bar elastic constants

and I, | for the Batdorf model are given in Table 7 where the across grain direction
ijk

3 & : : . Q 0 0 O
coincides with the centerline of the bar and the parameters are © T2 and g, in,
) y ) 2 2 2 Lf2
o G
; 1 ) 28 z rd
) i 4 .
\ 5 —_— — _— L — —_— =t =1 (25)
2 3. 0 0 0 0. .0 g 03 0 ~ O 0
Z < ! ] Z 3 = a

These constants are determined from unaxial data including the constant multiplier,
L0 .0 . o 5 " : i ) ; .

C, where ( 0.15 for ATJ-S. The use of constant strain ratios in the axial
tension range causes the stress ratios from the Batdorf model to deviate slightly

from %1 but this difference is small even up to =, = 0.004 as Figure 14 demonstrates.

I'able 7 Graphite bar material constants

DIRECTION k. J 5. g®
) ( 3
With Grain (r, 9) 1.8 x 10 0.1 0.8x10 1,22 & 30

G G :
Across Grain (z) ] X 10 0.1 0.65 x 10 1.04 x 1(“‘




A PATCHES-II model of the gage section of the test specimen was
developed using the material constants from Table 7. The geometric simplicity
and transverse isotropy allowed a simple one element symmetry model of a 30"
segment of the bar to be used. A single hydrostatic load condition of 4 ksi com-
pression was analyzed using successive elastic solutions of Equation (15) starting
from the linear solution. Convergence of the pseudo-force method was rapid as
Figure 15 illustrates and the resulting strains are in good agreement, Figures 16
and 17, with Jortner's test data. [n this particular problem the exact stress solu-
tion is known from equilibrium considerations and the iteration was terminated when
the stresses were within one percent of the exact solution. The convergence char-
acteristics of several interesting parameters are shown in Table 5.

Table 5 Nonlinear solution convergence data

Qe
0 -1000 -. 00614 . 7537 0.0
1 -3748 -.00973 . 5189 2.33
2 -3845 -, 00119 . 6335 3.52
3 -3909 -.00132 . 6882 4,17
4 -3948 -, 00139 R ki 4,54
5 -3970 -.00143 . 7331 4.75
o -4000 = —=—mee- BT emeeew

The computational performance of the model on an UNIVAC 1108 was
good, taking less than one minute per pseudo-load cycle for this small problem and
should be better on a parallel processing machine. The number of conjugate gradient
cycles required to maintain constant solution accuracy decreased with each pseudo-
load cycle but not dramatically. The original linear solution starting from zero used
74 cycles and the last solution required 54 cycles. The time required to generate

Q,, each cycle was negligible in comparison to the matrix solution costs.

=95 =




549 CONCLUSIONS

The computational system designed aund developed in this study has the
flexibility to encompass most of the available inelastic composite material models
and appears to have the efficiency to make its use feasible if not practical, It
will require additional experience and testing ina variety of applications before
the efficiency of the system can be fully established but the basic design philo-
sophy seems sound; namely, better computers are a more likely development
than better numerical methods. The use of stress or strain state variable modeling
is certainly not new but the design of one standard input format tor a entire class

of material models is a step forward.

The introduction of isoparametric modeling for material properties as
well as geometry is another important step required by the variability of composite
materials. In each instance mentioned, the results presented are a beginning with
much additional work required before the triaxial inelastic behavior of composites
is encompassed by the available models. This work should include:

1. Multiaxial testing programs, such as Jortners, for other three-

dimensional composites that includes a parallel computational

model development effort.

2. Extensions to include interstitial slip with friction at bimaterial
interfaces. This behavior in fiber reinforced composites is im-
portant to an understanding of microstructural effects on the

failure of these materials.

3. Development of alternatives to point stresses and strains as a
measure of composite material response for structural appli-

cations,

4. Development of representative volume element models suitable for

inelastic behavior and failure that account for the statistical nature

of three-dimensional composites.
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Figure 4. Parametric Cubic Models
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Figure 7. Carbon-carbon Unit cell Schematic
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Figure 9. Cracked Bar Schematic
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Figure 10. PATCHES-III Model of Cracked Bar
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APPENDIX

The program updates for nonlinear material modeling in PATCHES-III
were made using the generalized postprocessor system GPOSTP. This system
interfaces with PATCHES-IIT through three files: PPDATA, INPT and RANDOM16
created during a normal execution of a linear elastic analysis. Any routine in the
PATCHES-III library is available to GPOSTP and allows new capability, like MATN,

to be fully developed and tested before restructuring the original code.

In the present effort a major change had to be made to the code to cope
with large nonlinear matrix problems. These changes are complete and the re~
structured code is shown in the update to Figure 4-2 of the programmers manual.
The GPOSTP system for the MATN postprocessor is shown in IFigure 4-2a. The
limited testing of MATN accomplished during the study has been very successful.

This dink will be added to the basic system after all options are fully tested.

—
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BULK DATA DECK

Input Data Card: PATCHGR Patch generated by general line rotation.

IR PR S

Description: Generates a bicubic patch for the surface created by rotating
a PC line about a general axis of rotation through gamma
degrees.

Format and Example:

1 2 3 4 5 6 7 8 9 10
PATCHGR| ID LID, SEG ZAl ZA2 ZA3 ZBl 232 ZB3 +P1
PATCHGR| & 3 15 0 -3.0 2o 0.3 +P1

+P1 TID GAMMA [GAMMAO

+P1 25

Field Contents
ID The identification number to be given the patch generated from

line LID, segment number SEG.

LID,SEG The line number, LID, and segment number, SEG, that identifies the
PC line to be rotated. A blank SEG defaults to one.

7ZA1, ZBI Coordinates of two points that define the rotation axis directed from
ZA to Z—B .

TID Transformation ID, if any, that defines a gecometric transformation
to be applied to the PC line before rotation. The line, LID, does not
change.

GAMMA, The angle in degrees through which the PC line is rotated starting v,

degrees from the initial position of the line. The sense of rotation is
determined by the right-hand rule and the directed line (vector) from Z

to Z—B

|
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BULK DATA DECK

Input Data Card:  PATCHO Outline patch (es)

Description:

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>